Solomon's Descent Algebra Revisited
نویسنده
چکیده
Starting from a non-standard definition, the descent algebra of the symmetric group is investigated. Homomorphisms into the tensor product of smaller descent algebras are defined. They are used to construct the irreducible representations and to obtain the nilpotency index of the radical.
منابع مشابه
Enriched P - Partitions And
We generalize Stembridge's enriched P-partitions and use this theory to outline the structure of peak algebras for the symmetric group and the hyperoctahedral group. Whereas Stembridge's enriched P-partitions are related to quasisymmetric functions (the coalgebra dual to Solomon's type A descent algebra), our generalized enriched P-partitions are related to type B quasisymmetric functions (the ...
متن کاملar X iv : 0 70 6 . 27 11 v 1 [ m at h . C O ] 1 9 Ju n 20 07 A Multiplication Rule for the Descent Algebra of Type D
Here we give an interpretation of Solomon's rule for multiplication in the descent algebra of Coxeter groups of type D, ΣDn. We describe an ideal I such that ΣDn/I is isomorphic to the descent algebra of the hyperoctahedral group, ΣBn−2.
متن کاملLie Representations and an Algebra Containing Solomon's
We introduce and study a Hopf algebra containing the descent algebra as a sub-Hopf-algebra. It has the main algebraic properties of the descent algebra, and more: it is a sub-Hopf-algebra of the direct sum of the symmetric group algebras; it is closed under the corresponding inner product; it is cocommutative, so it is an enveloping algebra; it contains all Lie idempotents of the symmetric grou...
متن کاملA Semigroup Approach to Wreath-Product Extensions of Solomon's Descent Algebras
There is a well-known combinatorial definition, based on ordered set partitions, of the semigroup of faces of the braid arrangement. We generalize this definition to obtain a semigroup ΣGn associated with G ≀ Sn, the wreath product of the symmetric group Sn with an arbitrary group G. Techniques of Bidigare and Brown are adapted to construct an anti-homomorphism from the Sn-invariant subalgebra ...
متن کاملCounting Split Semisimple Orbits of Finite Lie Algebras by Genus
The adjoint action of a nite group of Lie type on its Lie algebra is studied. A simple formula is conjectured for the number of split semisimple orbits of a given genus. This conjecture is proved for type A, and partial results are obtained for other types. For type A a probabilistic interpretation is given in terms of Solomon's descent algebra and card shu ing. 3
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006